Search results for "Riemannian metrics"

showing 2 items of 2 documents

Fixed angle inverse scattering in the presence of a Riemannian metric

2020

We consider a fixed angle inverse scattering problem in the presence of a known Riemannian metric. First, assuming a no caustics condition, we study the direct problem by utilizing the progressing wave expansion. Under a symmetry assumption on the metric, we obtain uniqueness and stability results in the inverse scattering problem for a potential with data generated by two incident waves from opposite directions. Further, similar results are given using one measurement provided the potential also satisfies a symmetry assumption. This work extends the results of [23,24] from the Euclidean case to certain Riemannian metrics.

Mathematics - Differential GeometryWork (thermodynamics)01 natural sciencesinversio-ongelmatFixed angleMathematics - Analysis of PDEsIncident waveEuclidean geometryFOS: MathematicssirontaUniqueness0101 mathematicsinverse medium problemPhysicsosittaisdifferentiaaliyhtälöt35Q60 35J05 31B10 35R30 78A40Applied Mathematics010102 general mathematicsMathematical analysisCarleman estimatesRiemannian metricsSymmetry (physics)010101 applied mathematicsfixed angle scatteringDifferential Geometry (math.DG)Metric (mathematics)Inverse scattering problemAnalysis of PDEs (math.AP)
researchProduct

Geodesic flow of the averaged controlled Kepler equation

2008

A normal form of the Riemannian metric arising when averaging the coplanar controlled Kepler equation is given. This metric is parameterized by two scalar invariants which encode its main properties. The restriction of the metric to $\SS^2$ is shown to be conformal to the flat metric on an oblate ellipsoid of revolution, and the associated conjugate locus is observed to be a deformation of the standard astroid. Though not complete because of a singularity in the space of ellipses, the metric has convexity properties that are expressed in terms of the aforementioned invariants, and related to surjectivity of the exponential mapping. Optimality properties of geodesics of the averaged controll…

[ MATH.MATH-OC ] Mathematics [math]/Optimization and Control [math.OC]0209 industrial biotechnologyGeodesicGeneral MathematicsCut locusConformal map02 engineering and technologyKepler's equationFundamental theorem of Riemannian geometry01 natural sciencesConvexityIntrinsic metricsymbols.namesake020901 industrial engineering & automationSingularity0101 mathematicsorbit transferMathematicsApplied Mathematics010102 general mathematicsMathematical analysis[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]cut and conjugate lociRiemannian metrics49K15 70Q05symbols[MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC]
researchProduct